Difference between revisions of "Jordan Canonical Form"
Kfagerstrom (talk | contribs) (Created page with "$F$ field, $V$ finite dim vector space, $V\xrightarrow{t} V$ linear transforamtion. Assume that the charateristic polynomial of $t$ compleately factor into linear forms (so th...") |
Kfagerstrom (talk | contribs) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | $F$ field, $V$ finite dim vector space, $V\xrightarrow{t} V$ linear | + | $$ F $$ field, $$V$$ finite dim vector space, $$V\xrightarrow{t} V$$ linear transformation. Assume that the characteristic polynomial of $$t$$ completely factor into linear forms (so things that look like $$(x-r)^l$$). Then there exists a basis $$B$$ such that $$[t]_B^B=\begin{bmatrix} j_{e_1}(x_1)&\\ \; \ddots & \hspace{-12pt} j_{e_n}(x_n) \end{bmatrix}=j(t)$$. |
− | Each $r_i\in F$ is a root of $c_t$, the characteristic polynomial, and $e_i\geq 1$. The polynomials $(x-r_i)^{e_i}$ are the elementary divisors of $t$, and this jordan canonical form for $t$ is unique up to order of the blocks | + | Where each Jordan block $$J_n(r)$$ is an $$n\times n$$ matrix with entries $$a_{ij}=\begin{cases} r, & i=j \\ 1, & j=i+1 \\ 0 & \text{else} \end{cases}$$ |
+ | |||
+ | Each $$r_i\in F$$ is a root of $$c_t$$, the characteristic polynomial, and $$e_i\geq 1$$. The polynomials $$(x-r_i)^{e_i}$$ are the elementary divisors of $$t$$, and this jordan canonical form for $$t$$ is unique up to order of the blocks |
Latest revision as of 16:03, 26 April 2023
$$ F $$ field, $$V$$ finite dim vector space, $$V\xrightarrow{t} V$$ linear transformation. Assume that the characteristic polynomial of $$t$$ completely factor into linear forms (so things that look like $$(x-r)^l$$). Then there exists a basis $$B$$ such that $$[t]_B^B=\begin{bmatrix} j_{e_1}(x_1)&\\ \; \ddots & \hspace{-12pt} j_{e_n}(x_n) \end{bmatrix}=j(t)$$.
Where each Jordan block $$J_n(r)$$ is an $$n\times n$$ matrix with entries $$a_{ij}=\begin{cases} r, & i=j \\ 1, & j=i+1 \\ 0 & \text{else} \end{cases}$$
Each $$r_i\in F$$ is a root of $$c_t$$, the characteristic polynomial, and $$e_i\geq 1$$. The polynomials $$(x-r_i)^{e_i}$$ are the elementary divisors of $$t$$, and this jordan canonical form for $$t$$ is unique up to order of the blocks