Difference between revisions of "Free Modules"

From Queer Beagle Wiki
(Created page with " '''Definition:''' A subset A of an R-module M is a basis of M if A is linearly independent and generates M. An R-module M is a '''free''' R-module if M has a basis.")
 
Line 1: Line 1:
 +
'''Definition:''' An <math>R</math>-module <math>M</math> is a '''free''' <math>R</math>-module if <math>M</math> has a basis. A subset <math>A</math> of an <math>R</math>-module <math>M</math> is a basis of <math>M</math> if <math>A</math> is linearly independent and generates <math>M</math>.
  
'''Definition:''' A subset A of an R-module M is a basis of M if A is linearly independent
+
'''Examples:'''
and generates M. An R-module M is a '''free''' R-module if M has a basis.
+
# <math>R=R\{1_R\}</math> is a free <math>R</math>-module
 +
# <math>R^2=R\oplus R</math> has basis <math>\{(1_R,0_R),(0_R,1_R)\}</math>
 +
# <math>R[x]</math> is a free  <math>R</math>-module with (infinite) basis <math>\{1,x,x^2,...,x^i,...\}</math>
 +
# <math>R[x,y]</math> has basis  <math>\{x^n,y^m\ |\ n,m\geq 0 \}</math> as free <math>R</math>-module
 +
# <math>R[x,y]</math> has basis  <math>\{1,y,y^2, ...,y^i,...\}</math> as free  <math>R[x]</math>-module
 +
 
 +
 
 +
All free <math>R</math>-modules <math>M </math> have some basis <math>B=\{b_1,...,b_n\} </math> so have rank <math>n </math>, and can be written as <math>R^n\cong M </math>. Additionally every element <math>m\in M </math> can be uniquely written <math> m=\sum_{i=1}^n r_ib_i</math>.

Revision as of 16:46, 8 March 2023

Definition: An \(R\)-module \(M\) is a free \(R\)-module if \(M\) has a basis. A subset \(A\) of an \(R\)-module \(M\) is a basis of \(M\) if \(A\) is linearly independent and generates \(M\).

Examples:

  1. \(R=R\{1_R\}\) is a free \(R\)-module
  2. \(R^2=R\oplus R\) has basis \(\{(1_R,0_R),(0_R,1_R)\}\)
  3. \(R[x]\) is a free \(R\)-module with (infinite) basis \(\{1,x,x^2,...,x^i,...\}\)
  4. \(R[x,y]\) has basis \(\{x^n,y^m\ |\ n,m\geq 0 \}\) as free \(R\)-module
  5. \(R[x,y]\) has basis \(\{1,y,y^2, ...,y^i,...\}\) as free \(R[x]\)-module


All free \(R\)-modules \(M \) have some basis \(B=\{b_1,...,b_n\} \) so have rank \(n \), and can be written as \(R^n\cong M \). Additionally every element \(m\in M \) can be uniquely written \( m=\sum_{i=1}^n r_ib_i\).