Difference between revisions of "UMP for Free Modules"

From Queer Beagle Wiki
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
UMP for free modules
+
==UMP for Free Modules ==
  
 
Let <math>R</math> be a ring, <math>M</math> a free <math>R</math>-module with basis <math>B</math>, <math>N</math> an <math>R</math>-module, <math>j:B\to N</math> a function. Then there exists a unique <math>R</math>-module homomorphism <math>h:M\to N</math> such that <math>h(b)=j(b)\ \forall b\in B</math>.  
 
Let <math>R</math> be a ring, <math>M</math> a free <math>R</math>-module with basis <math>B</math>, <math>N</math> an <math>R</math>-module, <math>j:B\to N</math> a function. Then there exists a unique <math>R</math>-module homomorphism <math>h:M\to N</math> such that <math>h(b)=j(b)\ \forall b\in B</math>.  
 +
 +
==Proof==
  
 
As <math>m=\sum_{i=1}^n r_ib_i,\ b_i\in B</math> unique, imples  <math>h(m):=\sum_{i=1}^n r_ij(b_i)</math> is well defined
 
As <math>m=\sum_{i=1}^n r_ib_i,\ b_i\in B</math> unique, imples  <math>h(m):=\sum_{i=1}^n r_ij(b_i)</math> is well defined
  
 
We have two things to prove: existence and uniqueness.
 
We have two things to prove: existence and uniqueness.
Existence: By Lemma 1.59, any <math>0 \ne m ∈ M</math> can be written uniquely as
+
 
 +
''Existence:'' By Lemma 1.59, any <math>0 \ne m ∈ M</math> can be written uniquely as
 
<math>m = r_1b_1 + \cdots + r_nb_n</math>
 
<math>m = r_1b_1 + \cdots + r_nb_n</math>
with <math>b_i\in B </math> distinct and 0 6= ri ∈ R. Define h: M N by
+
with <math>b_i\in B </math> distinct and <math>0 \ne r_i \in R</math>. Define <math>h: M \to N</math> by <math> \begin{cases}
(
+
h(r_1b_1 + \cdots + r_nb_n) = r_1j(b_1) + · · · + r_nj(b_n) & \text{if} r_1b_1 + · · · + r_nb_n \ne 0 \\
h(r1b1 + · · · + rnbn) = r1j(b1) + · · · + rnj(bn) if r1b1 + · · · + rnbn 6= 0
+
h(0_M) = 0_N
h(0M) = 0N
+
\end{cases} </math>
 +
 
 
One can check that this satisfies the conditions to be an R-module homomorphism (exercise!).
 
One can check that this satisfies the conditions to be an R-module homomorphism (exercise!).
Uniqueness: Let h : M → N be an R-module homomorphism such that h(bi) = j(bi).
+
 
Then in particular h: (M, +) → (N, +) is a group homomorphism and therefore h(0m) = 0N
+
''Uniqueness:'' Let <math>h : M → N</math> be an <math>R</math>-module homomorphism such that <math>h(b_i) = j(b_i)</math>.
by properties of group homomorphisms. Furthermore, if m = r1b1 + · · · + rnbn then
+
Then in particular <math>h: (M, +) → (N, +)</math> is a group homomorphism and therefore <math>h(0_M) = 0_N</math>
h(m) = h(r1b1 + · · · + rnbn) = r1h(b1) + · · · + rnh(bn) = r1j(b1) + · · · + rnj(bn)
+
by properties of group homomorphisms. Furthermore, if <math>m = r_1b_1 + · · · + r_nb_n </math> then
by the definition of homomorphism, and because h(bi) = j(bi).
+
<math> h(m) = h(r_1b_1 + · · · + r_nb_n) = r_1h(b_1) + · · · + r_nh(b_n) = r_1j(b_1) + · · · + r_nj(b_n)
 +
</math> by the definition of homomorphism, and because <math>h(b_i) = j(b_i)</math>.
 +
 
 +
[[Category:Modules]] [[Category: Free Modules]] [[Category: Proofs]]

Latest revision as of 21:56, 9 March 2023

UMP for Free Modules

Let \(R\) be a ring, \(M\) a free \(R\)-module with basis \(B\), \(N\) an \(R\)-module, \(j:B\to N\) a function. Then there exists a unique \(R\)-module homomorphism \(h:M\to N\) such that \(h(b)=j(b)\ \forall b\in B\).

Proof

As \(m=\sum_{i=1}^n r_ib_i,\ b_i\in B\) unique, imples \(h(m):=\sum_{i=1}^n r_ij(b_i)\) is well defined

We have two things to prove: existence and uniqueness.

Existence: By Lemma 1.59, any \(0 \ne m ∈ M\) can be written uniquely as \(m = r_1b_1 + \cdots + r_nb_n\) with \(b_i\in B \) distinct and \(0 \ne r_i \in R\). Define \(h: M \to N\) by \( \begin{cases} h(r_1b_1 + \cdots + r_nb_n) = r_1j(b_1) + · · · + r_nj(b_n) & \text{if} r_1b_1 + · · · + r_nb_n \ne 0 \\ h(0_M) = 0_N \end{cases} \)

One can check that this satisfies the conditions to be an R-module homomorphism (exercise!).

Uniqueness: Let \(h : M → N\) be an \(R\)-module homomorphism such that \(h(b_i) = j(b_i)\). Then in particular \(h: (M, +) → (N, +)\) is a group homomorphism and therefore \(h(0_M) = 0_N\) by properties of group homomorphisms. Furthermore, if \(m = r_1b_1 + · · · + r_nb_n \) then \( h(m) = h(r_1b_1 + · · · + r_nb_n) = r_1h(b_1) + · · · + r_nh(b_n) = r_1j(b_1) + · · · + r_nj(b_n) \) by the definition of homomorphism, and because \(h(b_i) = j(b_i)\).