Difference between revisions of "Cayley-Hamilton Theorem"

From Queer Beagle Wiki
(Created page with "Let <math>F</math> be a field, and let <math>V</math> be a finite dimensional <math>F</math>-vector space. If <math>t : V → V</math> is a linear transformation, then <math>m...")
 
Line 1: Line 1:
 
Let <math>F</math> be a field, and let <math>V</math> be a finite dimensional <math>F</math>-vector space. If <math>t : V → V</math> is a linear transformation, then <math>m_t\mid  c_t
 
Let <math>F</math> be a field, and let <math>V</math> be a finite dimensional <math>F</math>-vector space. If <math>t : V → V</math> is a linear transformation, then <math>m_t\mid  c_t
 
</math>, and hence <math>c_t(t) = 0</math>.
 
</math>, and hence <math>c_t(t) = 0</math>.
Similarly, for any matrix <math>A ∈ M_n(F)</math> over a field <math>F we have <math>m_A|c_A</math> and <math>c_A(A) = 0</math>.
+
Similarly, for any matrix <math>A ∈ M_n(F)</math> over a field <math>F</math> we have <math>m_A|c_A</math> and <math>c_A(A) = 0</math>.
  
 
<math> </math>
 
<math> </math>

Revision as of 18:03, 10 March 2023

Let \(F\) be a field, and let \(V\) be a finite dimensional \(F\)-vector space. If \(t : V → V\) is a linear transformation, then \(m_t\mid c_t \), and hence \(c_t(t) = 0\). Similarly, for any matrix \(A ∈ M_n(F)\) over a field \(F\) we have \(m_A|c_A\) and \(c_A(A) = 0\).

\( \)