Difference between revisions of "817 - Algebra"

From Queer Beagle Wiki
Line 7: Line 7:
 
====[[Sylow Theory]]====
 
====[[Sylow Theory]]====
 
====Semi-Direct Product ====
 
====Semi-Direct Product ====
 +
:''see also'' [[Semi-Direct Products]]
 
====Quotient Groups====
 
====Quotient Groups====
 
====Isomorphism Theorems ====
 
====Isomorphism Theorems ====
 
+
:''see also'' [[Isomorphism Theorems]]
  
 
==Rings==
 
==Rings==

Revision as of 23:05, 7 December 2022

Groups

Theorems

Topics in Group Theory

Sylow Theory

Semi-Direct Product

see also Semi-Direct Products

Quotient Groups

Isomorphism Theorems

see also Isomorphism Theorems

Rings

Definition: A ring is a set \(R\) with two binary operation \( +\) and \(\cdot\) satisfying:

  1. \( (R,+)\) is an abelian group (with identity 0)
  2. \( (R,\cdot) \) is a semigroup
  3. \(\cdot \) is distributive over \( + \) (on both sides)

Ideals

A subring \( A \) of a ring \(R \) is an ideal in \(R \), if \(aR \) and \(Ra \) are subsets of \( A\) for every \(a \in A \), and \((A,+) \) is an subgroup of \((R,+) \).


Maximal Ideals

A maximal ideal of a ring \(R \) is proper ideal \(M \) such that the only ideals in \( R\) containing \(M \) are \( M\) and \(R \).


Prime Ideals

A prime ideal of a ring \(R \) is proper ideal \(P \) such that whenever \(xy\in P \) for \(x,y \in R \), \(x\in P \) or \(y \in P \).
An ideal \(P \) is prime if and only if \( R\backslash P\) is closed under multiplication.
Maximal implies prime but not conversely.

Named Rings

Euclidian Domains (EDs)

A Euclidean Domain (ED) is a domain \(R \) together with a function \(N: R \to \mathbb{Z}_{\geq 0} \) such that \(N(0)=0 \) and the following property holds: for any two elements \( a,b \in R \) with \(b\neq 0 \), there are elements \( q,r \in R\) such that \( a=qb+r \) and either \(r=0 \) or \(N(r)<N(b) \)

Principle Ideal Domains (PIDs)

Unique Factorization Domains (UFDs)