UMP for Free Modules
From Queer Beagle Wiki
Revision as of 17:17, 8 March 2023 by Kfagerstrom (talk | contribs) (Created page with "UMP for free modules Let <math>R</math> be a ring, <math>M</math> a free <math>R</math>-module with basis <math>B</math>, <math>N</math> an <math>R</math>-module, <math>j:B\...")
UMP for free modules
Let \(R\) be a ring, \(M\) a free \(R\)-module with basis \(B\), \(N\) an \(R\)-module, \(j:B\to N\) a function. Then there exists a unique \(R\)-module homomorphism \(h:M\to N\) such that \(h(b)=j(b)\ \forall b\in B\).
As \(m=\sum_{i=1}^n r_ib_i,\ b_i\in B\) unique, imples \(h(m):=\sum_{i=1}^n r_ij(b_i)\) is well defined